MODEL

GT250A128TAVZZ

REFERENCE
 S01000

DOCUMENTATION FOR THE ELECRIC REGULATOR DEVICE INSTRUCTIONS FOR USE AND MAINTANANCE

INDICE

1.GENERAL INFORMATION 4
1.1.Preamble: limits and liability 4
1.2.Limits to warranty 4
1.3.Purpose and content of the Manual 5
1.4.To whom the Manual is addressed 5
1.5.How to keep this Manual 5
1.6.Symbols 6
1.7. Staff prerequisites 6
1.8. Product Conformity 7
1.9. CE Conformity Certificate 7
1.10. CE mark 7
1.11. CE mark position 7
2. GENERAL DESCRIPTION 8
2.1. Fields of application 8
2.2. Technology 8
2.3. Power stabilization 8
2.4. Switchboard panel identification codes 9
2.5. Switcboard panel description 10
2.6. Technical data on switchboard panels 10
3. TRANSPORTATION, HANDLING AND STORING 11
3.1. Handling and Transportation 11
3.2. Lifting 11
3.3. Storing 11
3.4. Packaging disposal 11
4. INSTALLATION 12
4.1. General Information on Safety 12
4.2. Normal Use 12
4.3. Residual risks 13
4.4. Non-intended uses 13
4.4.1. Contaminating agents 13
4.4.2. Potential explosion-risk environments 13
4.4.3. lonising and non-ionising radiations 13
4.4.4. Vibrations 13
4.4.5. Warning, protection and information signs 13
4.5. Warning signs against danger 14
4.6. Protection and mandatory signs 14
4.7. Installation and connection 15
4.7.1. Location 15
4.7.2. Ventilation 15
4.7.3. Fixing 15
4.7.4. Ground fixing 15
4.8. Electric installation 16
4.8.1. Power mains 16
4.8.2. Connecting power supply conductors 16
4.8.3. Connecting lighting load conductors 16
5. WORKING AND COMMISSINING 17
5.1. Description of installed components 17
5.2. Preliminary check on commissioning 18
5.3. Commissioning phases 18
5.4. Turning off the switchboard panel 19
5.5. Resettable differential 19
6. WARNING ON MAINTENANCE 20
6.1. General warnings on safety 20
6.2. Power supply insulation 20
6.3. Visual inspection of the whole panel 21
6.3.2. Checking the efficiency of protective devices (fuses, switches) every 12 months 21
6.3.3. Checking protective circuit (earthing system) every 12 months 21
6.3.4. Ventilation functioning check (if present) 21
6.4. Cleaning 21
6.5. Parts replacement 22
6.5. Parts replacement 22
7. DISPOSAL 22
8.BILL OF MATERIAL 23

ANEXES

1. GENERAL INFORMATION

1.1. Preamble: limits and liability

Agentech s.r.I. will not be held liable in case of modification, alteration or connecting operations carried out which do not comply with the instructions set in this manual and may hinder the health and safety of people, objects and animals close to the electric equipment.

- As far as its use and maintenance are concerned, the electric equipment supplied is bind to:
- All rules, set by law and relevant regulations, in particular with regard to the upstream plant where the electric equipment is installed and its connection;
- All further instructions and warnings for its use included in the technical/graphical documentation attached to the electric equipment.
- It must be installed, protected, used, maintained and finally disposed of so as to prevent any damage to people, objects or animals. Furthermore, the necessary maintenance must be carried out.
- It should be used only for the activities intended and described in the chapter on functioning and in the scheme supplied.
- All technical and organizational measures so that other people, apart from specified operators, do not use the equipment, must be taken.

1.2. Limits to warranty

The manufacturer will be held liable exclusively if the product is acknowledged as defective at the time of delivery. The right to warranty by the purchaser is subject to articles 1490, 1491, 1495, 1667 of the Italian Civil Code.

Agentech s.r.l. guarantees a warranty service on its supplies for maximum:

- 12 (twelve) months for electric components
- 24 (twenty-four) months for electromechanical components
after the delivery date, under the following conditions:
- The purchaser shall not carry out repairs autonomously, unless previously authorised by Agentech s.r.l., otherwise Agentech will not incur liability since such intervention may modify the essential safety requirements and impair its correct functioning;
- Warranty extends to all components acknowledged as defective due to materials or workmanship and does not extend to damage due to an incorrect use of the electric equipment supplied or due to the breach of the precautionary measures concerning its use and maintenance included in the documentation;
- Warranty does not include any kind of expense related to the delivery of spare parts, labour costs and freight costs;
- Warranty on components is valid only if our suppliers guarantee the replacement of defective material;
- Warranty does not include any kind of compensation for the period of time the plant remains idle;
- Warranty does not extend to components subject to wear and consumables;
- General Sales Terms and in particular Warranty and Assistance Terms are valid only if the electric equipment is installed and maintained according to the "Installation, Use and Maintenance Manual".

1.3. Purpose and content of the Manual

The purpose of the Installation, Use and Maintenance Manual is to provide the purchaser with all necessary information so that, besides correctly using the electric equipment supplied, he/she will be able to use it autonomously and in the safest way possible. In particular it contains provisions aimed at guaranteeing:

- The safety of people and goods;
- An easy maintenance.

It includes information on technical aspects, installation, use and maintenance. Before any kind of intervention or action on the electric equipment, operators and qualified technicians shall read and understand the instructions set in this manual carefully. If there is any doubt on the correct interpretation of the instructions, they should contact the manufacturer so that he can clarify on such points: collect the necessary information.

1.4. To whom the Manual is addressed

The current Manual is meant for all operators and technicians qualified to Install, Use and Maintain the electric equipment. The person in charge of prevention and protection services must read through this Installation, Use and Maintenance Manual, taking all suitable technical and organizational measures in order to reduce risks linked to the use of the equipment by potential users and to guarantee a correct use of the device. The person in charge of prevention and protection service must also take into account any possible emergency situation which can arise during the installation, repair, maintenance, cleaning, dismantling and demolition, considering the working environment where the equipment had been used.

1.5. How to keep this Manual

- This Installation, Use and Maintenance Manual must be kept close to the plant where the electric equipment is installed, inside a special box and away from liquids or anything which may hinder its readability.
- Keep the manual for any future doubt and deliver it to any new owner of the equipment.
- The Manual contains instructions and warnings and is part of the documentation which shall always accompany the product, because otherwise the product would lack of one of its essential safety requirements.
- The manual is to be kept carefully and made available to all stakeholders.
- Warnings are meant to ensure the safety of people exposed to any potential risk.
- Instructions are meant to describe the most suitable way to use the plant as envisaged by the manufacturer.
- No part of it may be duplicated, copied or disseminated in any form or by any electronic, mechanical or photographical mean without the express consent of the manufacturer.

1.6. Symbols

This manual can make use of typographical symbols, pay attention to the following symbols when reading the manual:

SYMBOL	MEANING	DESCRIPTION
	Important:	read before starting any operation
0	Caution:	warning messages describe procedures which are to be followed in or- der to avoid the bad functioning and/or risks/dangers, even serious ones

1.7. Staff prerequisites

The staff who works with the electric equipment supplied must:

- have read and understood all safety provisions set in the Installation, Use and Maintenance Manual;
- be in normal psyco-physical conditions;
- have been previously instructed and trained on:
- risks and dangers of injuries and other damage which may be caused by direct or indirect contact;
- risks and dangers caused by over temperature, electric arcs or radiation;
- risks and dangers different from electric ones which may be caused by electric material;
- risks and dangers to which they may be exposed when carrying out specific activities set in this manual;
- be in possession of (or receive adequate training):
- an adequate educational level in order to understand the content of this Installation, Use and Maintenance Manual and correctly interpret the electric schemes and all technical figures;
- knowledge on main technical and accident preventive measures;
- know how to behave in case of emergency;
- know where to find individual protective devices and how to use them properly if prescribed by the manufacturer or when collective protective measures are inadequate;

I
The staff who work with the electric equipment is divided into three categories:

Skilled person: "Qualified person in possession of a specific education and experience in order to avoid dangers which may be caused by electricity".

Instructed person: "Qualified person, who was adequately instructed by skilled people in order to avoid dangers which may be caused by electricity".

Non-expert person: "non-expert person who has not been trained on electric activities".
In particular, people who can autonomously work only when there is no electric risk or under the eye of a skilled or instructed person when there is any electric risk.

1.8. Product Conformity

The electric regulator device described in this manual complies with all current provisions and regulations on health and safety, in particular, all switchboard panels sold in the EU market and manufactured by Agentech s.r.l. comply with all relevant directives and harmonised standards as declared by the manufacturer in the official "Conformity Certificate" and the special "CE mark" as follows:

1.9. CE Conformity Certificate

This document is part of the documentation supplied with the electric device. It enables the manufacturer to declare, under his/her responsibility, that the product complies with all essential safety requirements set by directives and harmonised standards.

1.10. CE mark

Products traded by Agentech s.r.I. are marked with the CE mark on purchasers and users' health and safety. This mark present in all switchboard panels is also used to identify the product and to verify technical data of particular importance during the installation, use and maintenance of the product.

1.11. CE mark position

Products traded by Agentech s.r.I. are marked with the CE symbol on purchasers and users' health and safety. This mark present in all switchboard panels is also used to identify the product and to verify technical data of particular importance during the installation, use and maintenance of the product.

2. GENERAL DESCRIPTION

Agentech produces advanced systems in the electronic and electrotechnical fields that are innovative in the management of the light sources and their integrations. By applying the experience of the energy conversion in the management of the fluorescent light sources, sodium vapours, mercury vapours and metallic iodides, Agentech proposes their optimisation with regulation of the required luminosity, in established time periods and in function of the sun irradiation, in order to have always the best lighting engineering level and the best management required in the specific application.

2.1. Fields of application

The main economic advantages are registered for both state and private fields, in particular:

- public lighting plants
- Shopping centres
- hypermarkets and supermarkets
- Industrial selling and service areas
- public, private and industrial buildings
- sporting facilities, parking areas, squares, stations, warehouses, hospitals, industries, public service areas, railway and airport junctions and terminals, areas destined to indoors and outdoors parking, roads and highways, tunnels.

2.2. Technology

"GENIUS" regulator was projected in this light. Power control technology offers great advantages: economic benefits, reliability (being it a static device), duration, efficiency over 99%, reduced size and weight, stabilization speed. The fully static system guarantees both single-phase and three-phase output power with an efficient variable value. In the three-phase power system, the three single-phase powers can be set independently in order to reduce the different
light flux in each phase. Electromechanical components in movement (such as relays or brushes) are not used, reducing costs of maintenance and offering further energy savings thanks to the reduction of voltage exceeding the nominal value (5-7\%).

2.3. Power stabilization

Thanks to the beneficial effect of line power stabilization bulbs can improve the useful life stated by the manufacturer (even by 100% on plants using new bulbs) as well as their light flux.

2.4. Switchboard panel identification codes

Switchboard panels distributed by Agentech s.r.I. can be identified by the following codes. These symbols identify 90% of the applications required by customers. However, special switchboard panels which meet specific customers' needs may differ from the following scheme.

1. RANGE OF PRODUCT

G GENIUS SERIES
2. SETTING UP

M SINGLE-PHASE
T THREE-PHASE
3. GENIUS POWER MODEL

118 GENIUS POWER 1 BASE 15A
125 GENIUS POWER 1 BASE 25A
135 GENIUS POWER 1 BASE 35A
218 GENIUS POWER 2 BASE 15A
225 GENIUS POWER 2 BASE 25A
235 GENIUS POWER 2 BASE 35A
250 GENIUS POWER 2 BASE 50A
16K GENIUS POWER BOOSTER 16KVA
22K GENIUS POWER BOOSTER 22KVA
27K GENIUS POWER BOOSTER 27KVA
S53 GENIUS POWER SIN 53A
4. TYPE OF BYPASS

A AUTOMATIC BYPASS
M MANUAL BYPASS
0 INSTANTANEOUS AUTOMATIC BYPASS
5. GENIUS CONTROL MODEL

640 GENIUS CONTROL CTRL-64
64F GENIUS CONTROL CTRL-64 4F
128 GENIUS CONTROL CTRL-128
010 GENIUS CONTROL 010
000 STAND ALONE MODE
6. TA OPTION

TA GENIUS WITH TA NN WITHOUT TA

7. TYPE OF PANEL

F PHENOLIC PLATE
M METALLIC PANEL
P PANEL IN POLYCARBONATE
V PANEL IN FIBERGLASS
8. GENIUS SENSOR OPTION

S WITH GENIUS SENSOR
Z WITHOUT GENIUS SENSOR

9. GPRS OPTION

G WITH GPRS
Z WITHOUT GPRS

2.5. Switcboard panel description

The swithchboard panel includes a regulator system for lighting plants assembled in one single equipment. It requires a three-phase power system with neutral. Thanks to this system, it is possible to distribute evenly 3 GENIUS POWER 2 regulators with the same power (among those available in Agentech's catalogue) in one lighting plant. The switchboard panel is provided with a single general magneto-thermal disconnecting switch with one single power supply control, which optimizes wiring costs and time and at the same time offers the opportunity to select each load individually, such as the BYPASS 3F control function.

2.6. Technical data on switchboard panels

PARAMETER	VALUE
Nominal power supply voltage	$230 \mathrm{VAC} \pm 15 \%$
Nominal frequency	50 Hz
Max output nominal current $\left(\mathrm{I}_{\mathrm{n}}\right)$	25 A
Phase number	$3 \mathrm{P}+\mathrm{N} \sim / \mathrm{PE}$
Auxiliary control circuit nominal voltage	230 VAC
Auxiliary pilot circuit nominal voltage	12 VDC
Nominal power (apparent)	$5,75 \mathrm{kVA}$
Insulation nominal voltage $\left(\mathrm{U}_{\mathrm{I}}\right)$	500 V
Expected maximum short circuit current	6 KA RMS SYM
at input terminals I_{cc}	$2000 \mathrm{~m} \mathrm{s.I.m}$.
Max altitude	IP 44
Protection degree	$\mathrm{Da}-5^{\circ} \mathrm{C} \mathrm{a}+40^{\circ} \mathrm{C}$
Operating temperature	$\mathrm{Da}-15^{\circ} \mathrm{C} \mathrm{a}+75^{\circ} \mathrm{C}$
Storing temperature	45 Kg
Total weight per unit	$715 \mathrm{X} 1285 \times 235$
Size in mm W X D X H	

3. TRANSPORTATION, HANDLING AND STORING

3.1. Handling and Transportation

Agentech s.r.l. uses adequate packaging in order to guarantee the integrity and preservation of the switchboard panels and accessories during transportation until delivery to the customer.

In order to guarantee the equipment's stability and integrity and to avoid mechanical stress during transportation and handling, switchboard panels, regardless their shape or morphology, must be handled with care and by using adequate lifting means (if necessary).
All necessary precautionary measures should be taken when handling the switchboard panels in order to avoid overturning.

Nevertheless, those who receive the goods shall check all packages carefully. Any comment/remark should be written on the freight document and countersigned by the carrier.

The conditions of the equipments delivered must be checked at the time of delivery. Checks can be undertaken by removing the equipments from the box and verifying its perfect integrity. Agentech s.r.l. accepts no liability if faults and damage occurred during transportation are not reported promptly at the time of delivery and as described above.

3.2. Lifting

Lifting must be carried out with means suitable to its weight (its rough weight is indicated in chapter 3.1 technical data table) in order to avoid damage to people and/or objects. Once the switchboard panel is loaded in the mean which will move it, it will be necessary to fasten and protect all protruding parts with specific protection elements.

Do not lay two devices one upon the other during their transportation and storing

3.3. Storing

Agentech s.r.l.'s switchboard panels are covered by a plastic wrapping and laid on wooden pallets when delivered. If the panel delivered is not installed immediately, it must be stored in a clean and dry place, keeping it away from dust, without removing the plastic wrapping. Do not stick labels, plastic substances or similar to the surface because, if left for too long, they may damage its external structure. Environmental storing conditions must comply with values indicated in chapter 3.1 (Technical data). If environmental conditions are different from the ones indicated, a special packaging shall be used.

3.4. Packaging disposal

Packaging materials shall be sorted according to their nature and disposed of according to the relevant legislation in force in the country.

4. INSTALLATION

4.1. General Information on Safety

Read carefully all instructions in this manual and those applied directly on the switchboard panel both in the form of written text and warning symbols; in particular instructions concerning safety against dangers of electric nature (danger of electrocution, tetanisation and burn) must be fulfilled.

Staff working with such equipment during its whole life must possess specific technical skills as well as acquired and acknowledged expertise in the specific sector. They should also be able to use the nec-
I essary working tools and adequate safety protection means (pursuant to D.Lgs 626/94).
If such requirements are not met, damage to people's health and safety may be caused.
Use switchboard panels only as intended by the manufacturer.
Improper uses may cause risk to people's health and safety s well as economic damage.

4.2. Normal Use

The switchboard panel was projected and manufactured in order to minimise, or even eliminate, dangers of any nature which may arise during its normal use, as long as:

- Its installation is carried out as indicated;
- Its use complies with the instructions provided;
- Individual protective devices are used as envisaged;
- Safety procedures are correctly applied.

\triangle
Improper behaviours by operators may be the cause of residual risk.

Dangers and risks caused by:

- Operator's lack of attention;
- Non compliance with information and provisions set in this manual;
- Alterations of the switchboard panel and/or its safety devices;
- Alterations of fixed repairs; because of their manufacturing typology they cannot ensure integral protection.

The following uses, which cannot be prevented by the manufacturer, yet are not allowed but reasonably possible, entail the following residual risks:

- Working on electromechanical and electric parts during their functioning;
- Working on electromechanical and electric parts when power is connected.

4.3. Residual risks

When using and maintaining the electric equipment, operators are exposed to certain residual risks which, for the very nature of these activities, cannot be eliminated:

Dangerous power: before undertaking maintenance operations, disconnect the power cable and start the general disconnecting device (see paragraph 6.5);

Residual power: components installed inside the electric equipment may contain condensers, where residual power may be present even when the device is off and the power cable is disconnected.

4.4. Non-intended uses

4.4.1. Contaminating agents

If not otherwise specified in the agreement or clearly stated in the order, the whole electric equipment supplied is not suitable for outdoor uses where contaminating agents are present such as fine dusts, acids, corrosive gases, salt and similar.

4.4.2. Potential explosion-risk environments

If not otherwise specified in the agreement or clearly stated in the order, the whole electric equipment supplied is not suitable for use in explosion-risk environments. The switchboard panel and its components are not made according to ATEX standards.

4.4.3. lonising and non-ionising radiations

If not otherwise specified in the agreement or clearly stated in the order, the whole electric equipment supplied is not suitable for use in environments with ionising and non-ionising radiations such as: microwaves, ultraviolet rays, X-rays and similar.

4.4.4. Vibrations

When the device is installed and maintained in compliance with this manual, vibrations which may produce dangerous situations do not occur. After the installation of the electric equipment, undesired effects of vibrations and shocks shall be avoided opting for a suitable assembling system or by using antivibrating supports.

4.4.5. Warning, protection and information signs

Agentech s.r.l.'s switchboard panels, according to their use and location, are provided with specific warning signs against risks which may incur inside the equipment as well as in the surrounding environment. With regard to potential risks, individual protective devices to be used are also displayed. Symbols usually stuck on switchboard panels and their meaning are as follows:

The client must change immediately all safety and warning labels which because of the wearing of the time may no longer be readable. If the client cannot find them, he can ask the manufacturer Agentech s.r.l. Should one of these labels be omitted, warranty will cease to have effect and Agentech will not be held liable for damage caused to people, environment or objects.

4.5. Warning signs against danger

Danger of electrocution (put on the switchboard panel and/or junction boxes)

Danger of electric shock (put closet o active conductors and under-voltage parts)

Danger of burn (hot surface)

DO NOT use water to control fires (put on the switchboard panel)

Put on the front side of the switchboard panel. It means:
danger of electrocution due to electromechanical and electronical parts installed in the switchboard panel. Agentech's switchboard panels do not have a door lock switch. Boxes or protective devices labelled with a triangle and a thunder stands for caution if opened by unauthorized or not qualified staff.

4.6. Protection and mandatory signs

Protect you face

Use dielectric gloves

Wear dielectric shoes

Check warning manual before undertaking any intervention

4.7. Installation and connection

"Installation and connection" operations are of remarkable importance since operations/interventions not carried out according to the following instructions may damage the equipment, the power supply system or harm operators. Specific tools (such as crosshead, flat-tip screwdrivers, hexagonal spanner, etc.) depending on screws must be used during all installation and connection operations. Attention should be paid on all labels on the components to be disconnected and close to terminal boxes (see paragraph 5.1.4 of this Manual)

4.7.1. Location

The conditions of the environment where the equipment is installed must fulfil the specific values for each type of switchboard panel as shown in the "Technical Data" table, chapter 3 of this Manual

4.7.2. Ventilation

In order to ease steam dissipation, 30 cm of free space should be left around the sides of the panel, excluding the back side. Natural air circulation inside the panel should be allowed avoiding to put objects which may obstruct even partially air circulation on cooling eyelets.

4.7.3. Fixing

Switchboard panels and all separate elements are projected preventing their overturning, fall off or accidental movement during their use. Regardless their shape and morphology, they must be put in a standing position and fixed to the main structure.
When used, they must be fixed to the wall and inside the specific wrapping with a proper fixing system to the bottom of the box which will have to stand its weight on a perfectly flat and vertical surface.
I
In order to guarantee adequate stability, techniques and specific fixing tools (for ground and wall fixing) are hereby described

4.7.4. Ground fixing

- Make sure that the switchboard panel lays evenly on the ground;
- Position on fixing points and draw a mark where holes should be done;
- Make holes in the ground on the four corners of the switchboard panel;
- Clean the holes from dust;
- Put the fixing supports into the holes in the ground through the holes in the panel;
- Screw in all screws properly.

4.8. Electric installation

Installation must comply with the legislation in force in the country of installation. Great attention must be paid during the installation of the electric system, in order to avoid dangers during its normal functioning.

4.8.1. Power mains

Power intensity and type must meet the instructions on the panel (see chapter 3.1 Technical Data of this Manual and the first page of the electric scheme). If it is connected to higher voltage, components will be fatally damaged; Upstream power supply device requires specific protection coordinates against blackout and overload which must correspond to the panel's features, as indicated in the label. Even when a differential device is installed, it must be coordinated with the protection circuit, in compliance with provisions and regulations in force in the country of installation.

4.8.2. Connecting power supply conductors

Power conductors must pass through the specific parts and close to exit terminals [L1-L2-L3-N/PE]. It must be a single piece, without interruptions from the device in order to avoid overload in the connecting points of the panel.

Conductors' terminals must be provided with crimp terminals. Cables must be 2 mm wide, suitable for the nominal voltage indicated in the label and in the "Technical Data" scheme.
Remove all protections in order to have access to switch and box terminals.
First connect the protection conductor (yellow/green earthing conductor) to the relevant terminal labelled [PE] and then all other neutral and phase conductors in sequence.

4.8.3. Connecting lighting load conductors

Electric equipment must be connected to the plant according to the following technical provisions:

- The connection of cables coming from the plant where it is installed must be carried out according to the protection degree of the switchboard panel, avoiding any impact on it;
- Cables from the plant must pass through the specific parts and close to the relevant terminal boxes as shown in the picture (terminal box Q.E.).
- Cables' section and features must comply with provisions set in the "electric chart". Cables with different section from the size indicated may change current short-circuit values, thus reducing their protection level in case of faults;
- Conductors' terminals, if the component to which they are connected requires it, must be provided with a crimp terminal.
- Connections must be carried out carefully following technical instructions and using suitable tools.
- Connect only one protection conductor to each earthing terminal.
- Fulfil all manufacturer's provisions for all components connected to the electric plant.

5. WORKING AND COMMISSINING

今
"Commissioning" is allowed only after conformity with provisions envisaged in paragraph 5
"Installation" of this Manual is declared. Close all boxes and check that all operations set in this Manual have been carried out properly before connecting the electric equipment.

5.1. Description of installed components

All components in the three-phase switchboard panel are listed below, according to their position in the plate (with corresponding nomenclature):

5.3. Preliminary check on commissioning

II
Before commissioning the switchboard panel, the following conditions should be checked.

- Check that the neutral cable is correctly connected to the corresponding terminal before connecting the electric equipment, otherwise there will be a three-phase electric power instead of specific phase electric power in the terminals of loads feeded between phase and neutron. The same holds true for the remaining conductors to phase terminals in input line (Fig. 5.1 - 24). If conductors are reversed components including all GENIUS POWER 2 flux regulators would be fatally damaged.
- Check that the earthing conductor (yellow/green) of the mains cable is connected to the PE terminal (fig. 5.1 24). If there is no protective circuit, protection against indirect contacts is not possible.
- Check the voltage mains in the terminals inside the terminal box (fig. $5.1-24$) with a specific tool (volmeter) and verify that the Uf line voltage in the terminals [R-S - T] corresponds to voltage indicated in the label. Also check that the voltage between each terminal $[R-S-T]$ and $[N]$ is equal to Uf $/ \sqrt{ } 3$, that is GENIUS POWER flux regulators' voltage.
- Check the correct tightening of all bolts to terminals in terminal boxes.
- Check the presence of an upstream protective device in the switchboard panel and that it complies with the provisions on the label and referred to in this Manual.
- Check that all switches and disconnect switches in the regulator panel are OFF and or 0 before starting the switchboard panel.

5.4. Commissioning phases

Figures into brackets (X) refer to components shown in fig. 6.1

STEP 1 Make sure that switches (2), (3), (19) e (21) are all OFF
STEP 2 Make sure that switches (7), (9) are in position ON
STEP 3 Turn ON the general magneto-thermal switch in the panel (2)
STEP 4 Check that the three phases $\mathrm{R}, \mathrm{S}, \mathrm{T}$, are present, verifying that illuminated lens are on (3)
STEP 5 Turn ON the magneto-thermal switches (21)
STEP 6 Check that the system moves to the bypass mode, verifying that the three red leds on the GENIUS BYPASS 3F are on. In this mode, all loads are directly connected to the power supply line.

STEP 7
Check that load works properly, verifying that each lamp is on. Keep the system under-load for approximately 10 minutes.

STEP 8
Turn OFF the general magneto-thermal switch (2) and keep the system off for approximately 15 minutes enabling the lamps to cool down

STEP 9 Turn ON the magneto-thermal switches (19)
STEP 10 Turn ON the switch (7)

STEP 11 Turn ON the general magneto-thermal switch in the panel (2)
STEP 12 Check that the voltage in the output terminals (25) is equal to 210

STEP 13
Adjust the GENIUS CONTROL CTRL128 (6) according to the needs of the application where the system is installed

Check the Manual annexed to the technical documentation

Turn OFF the switch (17), thus enabling the automatic mode of the plant, according to the GENIUS CONTROL CTRL128 (6) control unit setting

If the twilight switch is connected to the system, turn OFF the switch (8)

5.5. Turning off the switchboard panel

In order to turn off the lighting plant, the general switch must be set to the OFF position.
It is advisable not to disconnect the switch when under-load; therefore regulators and by-pass systems should not be working. Turning off the device when under load may cause dangerous electric arcs although components are properly sized.

5.6. Resettable differential

REC Plus differential switch automatically resets the differential switch in case of sudden opening or earth faults.
REMEMBER TO BLOCK THE AUTOMATIC RESETTING MODE EVERYTIME THE SWITCH IS MANUALLY OPENED. OTHERWISE THE SWITCH WILL INTERPRET THE OPENING AS A SUDDEN EVENT AND WILL PROCEED TO ITS CLOSING AFTER 10 SEC.

6. WARNING ON MAINTENANCE

Agentech's regulators do not generally have maintenance problems. Anyway, it is advisable to periodically carry out the checks herein described. Deadlines can be customised according to its conditions after the first checks.

6.1. General warnings on safety

1
Attention must be paid to all labels put on the machine and the electric device. During its use, safety device should not be altered or turned off for any reason.

Before starting the maintenance a sign should warn that operations are being carried out on the device. The device should be restarted only when all operations have safely concluded and all protective supports have been reinstalled.

6.2. Power supply insulation

Before carrying out any cleaning or maintenance operation, the electric equipment should be brought to zero energy condition.

Make sure that the protective device upstreaming the power supply line is locked in 0 position with special lockers.

6.3. Visual inspection of the whole panel

6.3.1. Checking connections every 12 months

The tightening of all screws which allows electric connections and the mechanical fixing of electric devices should be checked. Any trace of oxidation should be removed with a smooth abrasive action. Junctions should be protected with a narrow layer of conductive fat. If the junction is highly oxidized, it is better to replace the support device, the terminal and restoring ex-novo the connecting cable header, after removing the end of the cable where copper was oxidized. Such check should be carried out on all removable switches auxiliaries' plug and socket connectors.

6.3.2. Checking the efficiency of protective devices (fuses, switches) every 12 months

Open the device and check the conditions of fuses and automatic protection and disconnecting switches.
If there are no visible traces of oxidation or overheating, fuses and switches can be reassembled. Otherwise, they should be all replaced since the excessive overheating of a component can no longer guarantee a good electric contact.
In particular, checking the correct functioning of by-pass switches and minimum voltage coils as well as minimum exciters is highly advisable.

6.3.3. Checking protective circuit (earthing system) every 12 months

Check that the earthing terminal is efficiently connected to the ground earthing system. Connections should be opened both on the ground bar and on a real earthing support. Check the efficiency of contact surfaces and clean them. Connect and grease the external part of the juncture with Vaseline or conductive grease.
Such check is fully effective only if the ground earthing system is in perfect conditions. The ground earthing system must be checked regularly according to the legislation in force in the country of installation.

6.3.4. Ventilation functioning check (if present)

Check the correct functioning of the air ventilation devices in "Genius Power" regulators and of any extractor located on the side of the switchboard panel.

6.4. Cleaning

All cleaning operations must be carried out only when the electric equipment is off and disconnected (see paragraph 6.5). Any dust should be removed with a normal vacuum cleaner after turning off the panel. Removing dust with compressed air is not enough since it can go back or just be moved inside the device. Conductive dusts, coil or similar, or fuel dusts, wood dusts, cereals or similar should not deposit on it.

In order to clean the electric equipment and its components, do not use petrol, solvents or flammable and/or corrosive liquids. Only use solvents that are not flammable, toxic and that are traded and homologated.

Do not purposely alter safety supports; do not remove or hide warning labels. If labels are damaged or unreadable, ask the manufacturer to replace them.

6.5. Parts replacement

All parts of the electric equipment which need to be replaced are to be reintegrated with suitable components with the same features. Modifications to the original features of the electric equipment shall be notified and approved by the manufacturer.
After significant repairs or replacement operations, before starting the equipment, checks, registrations and tests indicated in this warning Manual must be carried out.

7. DISPOSAL

Disposal of switchboard panels must fulfil regulations in force in the country where it is disposed of. Switchboard panels are made of the following raw materials:

- steel parts
- plastic parts
- copper parts (wires)
- electric components (insulators and semiconductive components)

Switchboard panels must be disposed of sorting electric components and wires; the empty electric cupboard will be put together with metals, while electric components and wires will be put separately. Switchboard panels should not be considered as a household waste, but should be taken to a waste collecting point for electric and electronic parts to be recycled.

By properly disposing of this product, you can contribute to avoid potential negative consequences which may be caused by an improper disposal of the product. For more detailed information on how to recycle this product, contact the relevant municipal office, the local waste disposal service or the distributor where the product was bought.

8. BILL OF MATERIAL

N. 1	Shunt trip release device 230VAC CHINT 50017
N. 1	Automatic magneto-thermal switch 4P C40A 10KA CHINT 51411
N. 1	Fuse carrier disconnector $3 \mathrm{~F}+\mathrm{N} 10,3 \times 38$ with CHINT 80540 fuses
N. 1	Automatic differential switch 4P C40A 10KA CHINT 51411
N. 1	GENIUS BYPASS 3F AGENTECH
N. 1	GENIUS CONTROL CTRL128 AGENTECH
N. 1	2 switch relay 12V FINDER 405290120000
N. 2	Switch 1P 16A ABB EF9012
N. 3	Automatic magneto-thermal switch 2P C40A 10KA CHINT 55211
N. 3	quadripolar contactor (2 NO, 2 NC), power supply 230VAC, contact capacity 45A ABB EN3537
N. 1	GENIUS MODULE TA $3 \times 50 \mathrm{~A}$ AGENTECH
N. 3	Power factor correction device 20Uf 400VAC
N. 3	GENIUS POWER 2 35A AGENTECH
N. 1	Automatic resetting differential switch 4P 40A TELEREC Basic GE 676952
N. 3	Illuminated len 230VAC CHINT 81000/230
N. 1	Digital astronomical clock VEM VE048500
N. 1	switching feeder IN 120-240VAC / OUT 12VDC/3.5A 15VDC/3A CABUR CSD50B
N. 2	2 switch relay 230V FINDER 405282300000
N. 1	Modem GPRS FALCOM TANGO55/I
N. 1	Tripolar contactor (3NO), power supply 230VAC, contact capacity 45A a263010 ABB EN1036
N. 3	Automatic magneto-thermal switch 2P C20A 10KA CHINT 55208

ANNEXES

The GENIUS POWER 2 regulators are the first evolution of the GENIUS POWER range. Based on the same principle of the phase cut on I° and on IV° quadrants, these models maintain the same characteristics of efficiency above 99%, compactness and lightness. The logic of control of the power components is established by a microprocessor that grants to obtain the real effective value of the tension. Moreover it surveys the load current for the protection of the device from short circuits in output. Every model can operate in combination with the products of the GENIUS CONTROL range, or they can be controlled by digital signal RS232. Furthermore, also the stand-alone function has been implemented with two tension levels that can be set by a dip switch. They have been projected to be placed in switchboard panels. The GENIUS POWER 2 range consists of the models in the following table:

CODE	MODEL	I OUT	P $_{\text {TOT }}$
$\mathbf{1 0 0 3 0 2}$	GENIUS POWER 2 BASE 18A	18 A	$4,14 \mathrm{KVA}$
$\mathbf{1 0 0 3 0 3}$	GENIUS POWER 2 BASE 25A	25 A	$5,75 \mathrm{KVA}$
$\mathbf{1 0 0 3 0 4}$	GENIUS POWER 2 BASE 35A	35 A	$8,05 \mathrm{KVA}$
$\mathbf{1 0 0 3 0 5}$	GENIUS POWER 2 BASE 50A	50 A	$11,5 \mathrm{KVA}$

FUNCTIONAL CHARACTERISTICS

Stabilization of the output tension
Thermal protection
Short circuit electronic protection
Over temperature signalling
Over load signalling
Signalling of the presence of input signal
Signalling of the presence of feed tension
Predisposition for quick fixing to DIN bar
Controllable by all models of GENIUS CONTROL
Controllable by external signal RS-232
Independent regulation in two phases with selectable tension level, temporized by external timer
Independent lamp lighting cycle
VBUS input self-powered in independent regulation option

EQUIPMENT

Screw terminal board with 3 poles for $10 \mathrm{~mm}^{2}$ conductor for connection of VIN, VOUT, NEUTRAL
Red led signalling OVT (OVER TEMPERATURE)
Red led signalling OVL (OVER LOAD)
Stainless steel lid for protection against shocks
Screw terminal board with 2 poles for $1,5 \mathrm{~mm}^{2}$ conductor for connection of signals and external controls Spring-system for quick fixing to Din bar
Cooling fan
2 rotating Dipswitches with 16 positions for the setting of the tension levels

TECHNICAL CHARACTERISTICS

PARAMETER	GENIUS POWER 18A	GENIUS POWER 25A	GENIUS POWER 35A	GENIUS POWER 50A
Power	$230 \mathrm{~V} \pm 15 \%-50 \mathrm{~Hz}$			
Maximum output current	18ARMS	25ARMS	35ARMS	50ARMS
Thermal dissipation	36W @ 230 V	57W @230V	80W @230V	115W @ 230 V
Regulation range	From VMIN 170V to the power tension VIN			
Output voltage	Stabilized with a precision of 1,5\%			
Stabilization speed	50V/Sec.			
Regulation minimum load	80W			
Performance	99\%			
Class of isolation	Class I			
EMC Compliance	In accordance with EMC 89/336/CEE; 93/68/CEE; 98/79/CEE			
Operating temperature	From $-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$			
Storage temperature	From $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$			
Humidity	Up to 90\% without condensate			
Protection degree	IP20			
Weight	2,8Kg			
Dimension [mm]	$126 \times 220 \times 15$			

MECHANICAL DIMENSIONS

MOUNTING DETAILS

BASIC CONNECTION DIAGRAM

GP1 MODEL OF REGULATOR	LOAD MAX LOAD CURRENT	Q1 THERMAL MAGNETIC CIRCUIT BREAKER	C1 POWER FACTOR CORRECTION CAPACITOR
GENIUS POWER 2 BASE 15A	18A MAX	20A CURVA C	-
GENIUS POWER 2 BASE 25A	25A MAX	32A CURVA C	-
GENIUS POWER 2 BASE 35A	35A MAX	40A CURVA C	20رF 400VAC
GENIUS POWER 2 BASE 50A	50A MAX	50A CURVA C	40رF 400VAC

BASIC CONNECTION DIAGRAM

DRAWING 1
DRAWING 2
Connection of the GENIUS POWER 2 BASE with the controls of Control of the GENIUS POWER 2 BASE with RS232 signal the GENIUS CONTROL range

DATA PACKAGE FORMAT (WITHOUT ADDRESS)

SPEED: 2400 baud
BIT :
PARITY: NONE
STOP BITS : 1

SYNC $55 h$	DATA	CHK

SYNC	DATA	CHK		
Fixed value 55h Shows the start of the package.	Directly indicates the voltage in Vrms to be implemented to the gate. Value 0 indicates that it is off.	Indicated the package validity.		It calculated carrying out XOR operation on the BTh fixed
:---:				
value and on package data.				
CHK=BTh XOR SYNC XOR DATA				

DATA PACKAGE FORMAT (WITH ADDRESS)

SPEED : 2400 baud
BIT : 8
PARITY: NONE
STOP BITS : 1

SYNC $56 h$	DATA	CHK

SYNC	ADDR	DATA	CHK
Fixed value 56 h Shows the start of the package.	Device address. Value from 0 to 15.	Directly indicates voltage value in Vrms to be applied to to gate. Value 0 indicates that it is off.	Indicates the package validity. It is calculated carrying out XOR operation on the BEh fixed value and on package data. CHK=BEh XOR SYNC XOR DATA

Time span between one character and the following one should not exceed 100 ms , otherwise the package is rejected.Time span between a valid package and the following one should not exceed 3 s , otherwise the regulator detects the lack of serial communication and starts autonomous mode.

STAND ALONE FUNCTIONING AND DIPSWITCH SETTING

DRAWING 5
Typical situation of the GENIUS POWER 2 BASE in independent mode in the road application

VOUT variation in time related to the intervention of the external devices

When the crepuscular sensor closes the power contact, the GENIUS POWER DIP starts the lighting cycle of the lamp that keeps the output tension at 210 V for 10 minutes (adjustable). Afterwards the output tension turns to the level selected on the DIP SWITCH V1. When the timer closes the contact putting in short circuit the \pm VBUS, the output tension is brought to the level selected by the DIP SWITCH V2. On the contrary of the GENIUS POWER DIP, the VBUS is self-powered and does not require any external power.

DIP-SW V1

The value of output voltage in autonomous mode when serial communication is absent with open gate. Data package with address is accepted only if V 1 is in position 0 or 1 , thus V 2 acts as device address and the output value in autonomous mode is the same in case of both open and closed gate. If the autonomous mode starts when the gate is closed and value V1 is different from 0 or 1, the regulator runs a pre-heating cycle at 210 V for 10 minutes. In autonomous mode output voltage variation is equal to $12 \mathrm{~s} / \mathrm{V}(5 \mathrm{~V} / \mathrm{min})$

DIP	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
V2	${ }^{*} 0$	$* 210$	165	170	175	180	185	190	195	200	205	210	215	220	225	230

*0 MODE CAN BE SET WITH ADDRESS FROM V2. OUTPUT VOLTAGE FROM OV WITHOUT SIGNAL
*210 MODE CAN BE SET WITH ADDRESS FROM V2. OUTPUT VOLTAGE FROM 210V WITHOUT SIGNAL

DIP-SW V2

Value of the output voltage in autonomous mode when serial communication is absent and gate is closed. Device address with V1 in position 0 or 1.

DIP	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
V2	155	160	165	170	175	180	185	190	195	200	205	210	215	220	225	230

GENIUS SINLE-PHASE E THREE-PHASE BYPASS

GENERAL INFORMATION

This bypass model, that can be either single-phase or three-phase, has been projected to control directly an auxiliary telebreaker. The intervention occurs when the tension on the lamps drops below 50% of the network tension. Such intervention is signalled by red led and by an "open collector" output alarm. The putting back in operation is automatically carried out upon restart of the regulation system. Furthermore it is possible to activate or deactivate the bypass status with the button located in the front of the device or through an input for the remote control. The single-phase version is manufactured in 2 units modular container, while the three-phase one is in 3 units modular container. They are both predisposed for omega bar rapid fixing.

CODE	MODEL
$\mathbf{1 0 0 8 9 2}$	GENIUS CONTROL BYPASS 1F
$\mathbf{1 0 0 8 9 3}$	GENIUS CONTROL BYPASS 3F

FUNCTIONAL CHARACTERISTICS

- It surveys the difference between network tension and output tension of the GENIUS POWER
- Direct control of the exchange contactors for the bypass state
- Activation, deactivation and remote signalling of the bypass state
- Manual activation and deactivation of the bypass state
- Visual signalling of the bypass state
- Manufactured in modular box for omega bar fixing

EQUIPMENT

- Red led signalling the bypass state
- Set/Reset buttons for each phase
- Serial communication gate RS232 with implemented BUS protoco
- Photo triac outputs for exchange contactors regulation
- Open collector outputs for the bypass state signalling

TECHNICAL CHARACTERISTICS

PARAMETER	BYPASS 1F	BYPASS 3F
$\Delta \mathrm{V}$ max (VIN-VOUT)	$120 \mathrm{~V} \pm 20 \%$	
Reaction time	1015 seconds	
Isolation class	Class I	
Operating temperature	From $-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$	
Storage temperature	From $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	
Humidity	Up to 90% without condensate	
Protection degree	IP20	
Weight	20 g	40 g
Terminal section	Solid conductors $2.5 \mathrm{~mm}^{2}$	
Dimension [mm]	$90 \times 35 \times 60$	$90 \times 52,5 \times 60$

BYPASS 1F CONNECTIONS

CONTATTO	DESCRIZIONE
+ALRM	OUTPUT OPEN-COLLECTOR ALLARM SIGNALLING
-ALRM	
+EXT	INPUT REMOTE CONTROL BYPASS STATE
-EXT	
LIN	POWER INPUT 230VAC
NE	NEUTRAL
VO	INPUT READING OF OUTPUT TENSION
BY-PSS	COMMAND ACTIVATION BYPASS

BYPASS 3F CONNECTIONS

BYPASS $1 F$ Dimension Drawing

GENIUS SENSOR TA 3X50 MODULE

GENERAL INFORMATION

Accessory device of the GENIUS CONTROL CTRL128 used for the reading of the regulation system currents with a precision of $0,5 \%$. It can survey currents up to 50Arms. Extremely compact, light and simple to be installed on a omega bar inside switchboard panels. The connection with the GENIUS CONTROL is carried out through quick insertion screw connectors.

CODE	MODEL
$\mathbf{1 0 0 9 9 5}$	GENIUS SENSOR TA 3X50 MODULE

FUNCTIONAL CHARACTERISTICS

- It measures currents up to 50Arms with a precision of 0,5\%
- It operates in combination with the GENIUS CONTROL CTRL128
- Planned for installation on standard omega bar
- Compact, light and simple to be installed

EQUIPMENT

- Terminal blocks for omega bar fixing
- Terminal board clutch for a rapid wiring

TECHNICAL CHARACTERISTICS

PARAMETER	
Irms max	50 A
Tolerance detection	$0,5 \%$
Isolation class	Class I
Operating temperature	From $-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
Storage temperature	From $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Humidity	Up to 90% without condensate
Protection degree	IP20
Weight	200 g
Terminal cross section	Solid conductor $2.5 \mathrm{~mm}^{2}$
Dimension	$90 \times 35 \times 60$

DISPOSITION OF CONTACTS

CONTACT	DESCRIPTION
NE	NEUTRAL
$+1-R$	OUTPUT MEASURING PHASE R CURRENT
$+1-S$	OUTPUT MEASURING PHASE S CURRENT
$+I-T$	OUTPUT MEASURING PHASE T CURRENT

User Manual

 ASTRONOMICAL TIME SWITCH

PROVINCE CODE／CAPITAL											
$\begin{aligned} & \hline \text { Codice } \\ & \text { Code } \end{aligned}$	Sigla Abbrev	Nome Name	$\begin{aligned} & \text { Codice } \\ & \text { Code } \end{aligned}$	Sigla	Nome Name	$\begin{aligned} & \text { Codice } \\ & \text { Code } \end{aligned}$	Sigla ab	Nome Name	Codice	Sigla	Nome Name
0	［AG］	Agrigento	26	［CR］	Cremona	52	［ME］	Messina	78	ROMA	Roma
1	［AL］	Alessandria	27	［KR］	Crotone	53	［M］	Milano	79	［RO］	Rovigo
2	［AN］	Ancona	28	［CN］	Cuneo	54	［MO］	Modena	80	［SA］	Salerno
3	［AO］	Aosta	29	［EN］	Enna	55	［NA］	Napoli	81	RSM	San Marino
4	［AR］	Arezzo	30	［FE］	Ferrara	56	［ NO ］	Novara	82	［SS］	Sassari
5	［AP］	Ascoli Piceno	31	［F］	Firenze	57	［ NU$]$	Nuoro	83	［S］］	Savona
6	［AT］	Asti	32	［FG］	Foggia	58	［OR］	Oristano	84	［S］］	Siena
7	［AV］	Avellino	33	［FO］	Forii	59	［PD］	Padova	85	［SR］	Siracusa
8	［BA］	Bari	34	［FR］	Frosinone	60	［PA］	Palermo	86	［SO］	Sondrio
9	［BL］	Belluno	35	［GE］	Genova	61	［PR］	Parma	87	［TA］	Taranto
10	［BN］	Benevento	36	［GO］	Gorizia	62	［PV］	Pavia	88	［TE］	Teramo
11	［BG］	Bergamo	37	［GR］	Grosseto	63	［PG］	Perugia	89	［TR］	Terni
12	［B］］	Biella	38	［IM］	Imperia	64	［PS］	Pesaro	90	［TO］	Torino
13	［BO］	Bologna	39	［IS］	Isernia	65	［PE］	Pescara	91	［TP］	Trapani
14	［BZ］	Bolzano	40	［SP］	La Spezia	66	［PC］	Piacenza	92	［TN］	Trento
15	［BS］	Brescia	41	［AQ］	L＇Aquila	67	［PI］	Pisa	93	［TV）	Treviso
16	［BR］	Brindisi	42	［LT］	Latina	68	［PT］	Pistoia	94	［TS］	Trieste
17	［CA］	Cagiari	43	［LE］	Lecce	69	［PN］	Pordenone	95	［UD］	Udine
18	［CL］	Caltanissetta	44	［LC］	Lecco	70	［PZ］	Potenza	96	［VA］	Varese
19	［CB］	Campobasso	45	［LI］	Livorno	71	［PO］	Prato	97	［VE］	Venezia
20	［CE］	Caserta	46	［LO］	Lodi	72	［RG］	Ragusa	98	［VB］	Verbania
21	［CT］	Catania	47	［LU］	Lucca	73	［RA］	Ravenna	99	［VC］	Verceli
22	［Cz］	Catanzaro	48	［MC］	Macerata	74	［RC］	Reggio Calabria	100	［VR］	Verona
23	［CH］	Chieti	49	［MN］	Mantova	75	［RE］	Reggio Emilia	101	［V］	Vibo Valentia
24	［CO］	Como	50	［MS］	Massa	76	［R1］	Rieti	102	［V］	Vicenza
25	［CS］	Cosenza	51	［MT］	Matera	77	［RN］	Rimini	103	［V］	Viterbo

taely or orabroad． Italy or abroad．

If the device is to | the latitude or lonsitudde of the place of instalalation，but merely to enter the code for the the talain |
| :--- |
| province see the | province（see the＂Province code／Capita＂）table）．When the device is to be installed outside

Italy it is necessary to know the geographical data（latitude and longitude）．
INITIAL SETTING（selection of language and place of installation）
Press the＂ $\mathbf{0}$＂key followed by the＂om＂key within 3 seconds．The message＂＂ELEELE Yoür
 Press＂＂o to confirm and go on automatically to the astronomical parameter menu．
The programming menu for Italy or abroad will appear，depending on the selection made．

SETting the astronomical parameters for italy
 Mpital，se the＂Province oode Capita＂＂table．

Due to the characteristics of the location alltitude，surrounding mountains and other
geographical featres）the sunnisand sunses times may fiff from thos calculated，and this

The message＂SLinr iSE ETE OFF5EL＂will move across the screen（this parameter provides a

DISPLAY $/$ ZEROING OF THE RELAY OUTPUT TIIER
he number of ornurs for＂＂⿴囗⿰丿㇄心．＂key for at least 3 s iscisplayed（displayed as CH 1 ）．The timer can

The message＂＂5EE PR55 PEr．bto octo＂will move across the screen
This is the passord to disable the settings suard．

SEtting the astronomical parameters for foreign installation
This involves entering the defrees of latitude and longitude for the location This information can
be obtained from an atlas．

Press＂凹＂to confirm the information and go to to the nexts stage in the programming
（the parameter range is $-60^{\circ}=+44^{\circ}$ ）
Note：the degrees latitude for the northern hemisphere are preceded by the plus sign

 （the e parameter range is $\pm 180^{\circ}$ ）
the eastern direction are preceded by the plus sign

The message＂E，IRE ZonE ERSE＝PLu5 5 Lin＂will move across the screen． This parameter stands for the hours of difference from Greenwich meridian zero．The value necessary，this can be modified in the followinis way：

（the parameter range is $\pm 14 \mathrm{~h}$ in steps of 30° ）
Note：the plus sign corresponds to eastern longitudes
For the other parameters（correction of sunsetsunrise time and display／zeroing of timer output）
see the instructions for the＂Setting the Astronomical Parameters for Italy＇menu
Note：the＂Astronomical Parameter Settin＂＂menu can be entered in two w
automatically after setting the instatlation zone and language
－later by holding down the＂ m ＂key

SETTING THE TIME AND DATE

the seconds will flash in the field monthth with to the symbol＂and the day of the week will

or＂＂W＂），summer or winter time and the relay status．
Normal operation is restored even if n key is

Programming the change between summer and winter tim

 This is used to enable and disable the automatic changs between summer and wintertime．It also defines the time change method．The time change is enabled in Italian mode
by defaut：

| winter
 summer | iast Sunday in March | in UK | in North Sunday in March |
| :---: | :---: | :---: | :---: | 1st Sunday in April \quad. hold down＂©＂for a least 3 seconds to see the＂ChRnGE ERE EnRbL E ＂message

move a acros the screen with the symbols＂＂or＂$\$$＂．Select ON or OFF with the＂＂
 Press oc confirm the information and go to the next stage in the programming．
If the previous parameter is mone previous parameter is OFF the programming will terminate if 0 the time change 1）in are－determined month and day（every year）
2）on the eamene day of the east week of a re－determined month
3）on the same day of week 1． 2 or or 4 in predeterned

IMMER／WINTER TIME MODIFICATIO

After setting the winter time change mode，the symbol＂＊＂stays on．During the time
change setting for summertime，the sumbol＂w＂＂stays on

$$
\begin{aligned}
& \text { DATE): the display shows: } \\
& \begin{array}{|l|l}
\hline \text { LAST } & \begin{array}{l}
\text { If the time change takes place on a determined day of the last week of a } \\
\text { pre-determined month }
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{array}{c|c}
\text { LAST } & \begin{array}{l}
\text { If the time change takes place on a determined day of the last week of a } \\
\text { predermined month }
\end{array} \\
\hline \text { 1st } & \text { If the time change takes lace on a determined day of the first week of a }
\end{array}
$$

$$
\begin{array}{|l|l}
\text { d } & \begin{array}{l}
\text { If the time change takes place on a determined day of the third week of a } \\
\text { predetemined month } \\
\hline
\end{array} \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l}
\hline \text { Ith the time changge takes place on a determined day of the fourth week of a } \\
\text { pre-determined month }
\end{array}
$$

DATE If the time change takes place on a precise date（month and day）

ADVANCED OPERATIONS

manual output forcing switching the device on and off
When＂0＂followed by＂©＂a are pressed，the message＂FSt off＂will appear on the
display，then the device will switch off completely（use this method to avoid running dow display，then the device will switch off completely（use this method to avoid running dow
the battery if the device is to be switched of f for a long time）．Press＂ 0 ＂to switch on Note：the relay output timer is not deleted

SETTINGS GUARD

 the password and press＂＂I＂to confirm
Note：to restore default password（＂123＂）press＂RESET＂．
SUNRISE－SUNSET TIME DISPLAY
＂The sunnise and sunset times for the current date can be displayed alternately by pressing
The message remains on the display for approximately 2 seconds，then the device returns
to normal operation
Note：the time displayed takes the sunrise and sunset correction parameters into

REFERENCE STANDARDS

Conformity to the EU directives：
200695 FC （ Low voltage Lev）
2004108 EC （（Electromagnetic con
2004108 EC（Electromagnetic compatibility－EMC）
is declared with reference to the following standards：
EN $60730-2-7$, EN $610000-6-1, ~ E N ~$
$61000-6-3$
$\begin{aligned} & \text { From norm } \\ & \text { TMe force．} \\ & \text { Thing }\end{aligned}$
$\begin{aligned} & \text {＂rom normal operating mode，it is possible to modify the status of output using the } \\ & \text { The forcing }\end{aligned}$
$\begin{aligned} & \text { The forcing of the output is temporary，up to the next programmed event the current } \\ & \text { status is esest at the following midnight or when the programming parameters are }\end{aligned}$
$\begin{aligned} & \text { The output may be permanentlly forced if key＂N＂＂is held dow for } 3 \text { seconds } \\ & \text { In this way，the prorramming has in infuece on the status of the output．} \\ & \text { The status of the output is indicated on the display：}\end{aligned}$
$\begin{aligned} & \text { The status of the outup is indicicated on the display：} \\ & \text {－temporary forcing is ind indedy the flashing of the current relay status and permanent } \\ & \text { forcing is indicicated dy the t Lock }\end{aligned}$
Installation instructions

Instalación del aparato

EN Remove the earth leakage switch to be
replaced.
SP Desmontar el diferencial.
IT Rimuovere il dispositivo differenziale da
sostituire.

[^0]Tele REC

Funzionamento

3 moduli da $17.5 \mathrm{~mm} /$
$220 / 240 \mathrm{~V}-50 / 60 \mathrm{~Hz}$
$0.3 \mathrm{~s}<t<1 \mathrm{~s}$
1 max 2 A 0250 VAC

 Dipende dal codice
GE occoppioto

Datasheet

FALCOM TANGO

The actual versoor of the user manuat and updares you will find on
our wetbite sww falcom de > manuals : sotware.
This information serves only for product specification and is in no way legn!!y binding.
FALCOM GmbH can mot be hed responsible for any damages whatsoever, except in case
of gross negligence on our parn. We reserve the right to change or modify this produce
whont notice. These operating instructions are protected by copyrighs R eproduction
is unlaw fut.

$$
\text { date } 29 \text { April } 2003 \text {, version } 1.00
$$

Subjects to change and alf rights reserved.

Technical Data

* Dimensions: $\quad 111.5 \mathrm{~mm} \times 52 \mathrm{~mm} \times 24.5 \mathrm{~mm}(\mathrm{~B} \times \mathrm{H} \times \mathrm{L})$
* Weight:

82 g
Power Supply
10.8..31,2 V DC
$52 \mathrm{~mA} / 12 \mathrm{~V}$ (idic)
$155 \mathrm{~mA} / 12 \mathrm{~V}$ (Power Level 7)

* Temperature Range: Storage: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Use: $\quad-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

* Interface A: power supply, cable reference

Pinl: GND (brown)
Pin2: Mute (ereen) (currently not used)
Pin3: Ignition (yellow) (connected to positive pole
Pint: Power supply (white) ($10.8 \mathrm{~V}-31.2 \mathrm{~V}$)

* Interface B: RS232 V24, 9-pin Sub-D fomale

Pinl: $D(D$
Pin. TXD
Pin3: RXD
Pint: DTR
Pont: DTR
Pans: GND
Ping: DSR
Ping: DSR
Pin7: RTS
Pink: $1 / 1$
Ping: RI

* Interface C: R 545, Spin shiclded tor atio ank RS232

Pinl: $10 \vee D C+5 \% .150$ ma autom
Pin2: RXD
Pinl: : XD
Pma: GiND Pins: SPK + Pin6: SPKPin7. MIC+ Pas: MIC.

* Interface D
* Audio interface:

GSM antenna, 50Ω SMB or FMI. Eemale

Electret-Microphone
Laudspraker 150) (2

Caution: In case of firmware update, after the TANGO modem is

 powered on, remove the Ignition Line from bigh voltage level and leave it open or connect it to ground (do not use any pull up resistor on this line, it is internally pulled up). Do not begin to update the firmware if the Ignition Line is still connected to high voltage level, the modem will be destroyed.* SIM card interface: forsmall SIM cards
* Digital interface: AT commands according io ETSI

Connector:
Logie:
Baudrate:
Parity:
Character format:
Signal levels:

GSM107.07. GSM 0705
Spin RJ45, 9-pin Sub-D (female) DIN 41652 V. 24 asynchron 9600 baud (programmabic 1200.. 115.200 baud) None
8 data bits, no parity. I slop bit
CCITT recommendation V. 28

* Short message service: GSM 03.40. GSM 07.05
- SMS mobile originated
- SMS mobile teminated
- CBS tevu PDU mode. 7.8 bit data

Routes: SMS MO and MT
Mode: Iext PDU mode, 78 bit data

* Data communication: asynchronous, transparent and non-transparent
GSM 07.01. GSM 07.02. GSM 04.21
- 300 bos V.21
- 300 bps V.lio
- 1200 bps V. 22 - 1200 bps V. 110
- 2400 bns V. 22bis
- 2400 bps V. 110
- 4800 bps V. 32
- 4800 bps V. 110
- 9600 bos V. 32
- 9600 bps V 110
LED vellow: Actual connection
LED green: Status

GENIUS CONTROL
 CTRL-128

INSTRUCTIONS MANUAL
Rev. 1

GENERAL DESCRIPTION

Genius Control CTRL-128 is a control device of the Genius range allowing the management of those regulation systems, that use the power units of the Genius Power line within singleand three-phase lighting systems. The timer mode together with one power reserve clock allow to program timing of ignition and shutoff, and also the required output tension levels. The probe Genius Sensor allows to achieve the required illuminance value according to the output tension level. The integrated measuring unit provides values of tension, current, active and reactive power, power factor and operation energy of the system; moreover it is able to gather the instantaneous and total energy saving of the system according to the operating conditions. The control of different kinds of alarm is also included. One single knob and an alphanumeric display allow to enter all the functions and to set all the operating parameters through a menu system.

TECHNICAL DATA

Feeding
Inputs VI-R/S/T and VO-R/S/T
Inputs I-R/S/T with module TA3X50
Outputs PW-ON and BY-PSS
Output ALARM
Insulation
Emission EMC
Immunity EMC
Operating temperature
Storage temperature
Humidity
Protection degree
Weight
Clamps section
Serial interface gate
Dimensions (mm)
$12 \mathrm{VDC} \pm 10 \% 330 \mathrm{~mA}(4 \mathrm{~W})$
max 280 Vrms
max 50Arms
230VAC 200mA
30VDC 40mA
Class I
in accordance with EN61000-6-2
in accordance with EN61000-6-3
from $-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
from $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
up to 90% without condensation
IP20
500 g
Rigid conductor 2.5 mm 2
D-sub 9 poles
$157,5 \times 110 \times 71$

CONNECTIONS

COMM 1	COMMON FEEDING AND INPUTS	
+12VDC	2	FEEDING INPUT 12VDC
COMM	3	COMMON FEEDING AND INPUTS
+TIMR	4	TIMER ENABLING CONTACT
COMM	5	COMMON FEEDING AND INPUTS
+EXP	6	EXPANSION INPUT
COMM	7	COMMON FEEDING AND INPUTS
+SENS	8	CONNECTION INPUT TO THE GENIUS SENSOR
COMM	9	COMMON FEEDING AND INPUTS
+MANL	10	LAMPS MANUAL IGNITION CONTACT
NE	11	NEUTRAL
BY-PASS	12	RELAY BYPASS CONTROL
PW-ON	13	RELAY ON/OFF CONTROL
NE	14	NEUTRAL
+ I-T	15	TA MODULE INPUT FOR SENSING THE T PHASE TENSION
NE	16	NEUTRAL
+I-T	17	TA MODULE INPUT FOR SENSING THE S PHASE TENSION
NE	18	NEUTRAL
+ I-T	19	TA MODULE INPUT FOR SENSING THE R PHASE TENSION
+ALARM	20	OPTO-INSULATED OUTPUT FOR ALARM SIGNAL
-ALARM	21	OPTO-INSULATED OUTPUT FOR ALARM SIGNAL
+BUS	22	COMMUNICATION GATE TO THE GENIUS POWER
-BUS	23	COMMUNICATION GATE TO THE GENIUS POWER
VI-R	24	SENSING ACCESS TO THE INPUT TENSION R PHASE
VI-S	25	SENSING ACCESS TO THE INPUT TENSION S PHASE
VI-T	26	SENSING ACCESS TO THE INPUT TENSION T PHASE
VO-R	27	SENSING ACCESS TO THE OUTPUT TENSION R PHASE
VO-S	28	SENSING ACCESS TO THE OUTPUT TENSION S PHASE
VO-T	29	SENSING ACCESS TO THE OUTPUT TENSION T PHASE
RS232		SERIAL COMMUNICATION GATE RS232

FUNCTIONING

Timer

The Timer of the Genius Control CTRL-128 controls the different ignition and shutoff cycles of the lighting system. The timer parameter indicates if each cycle is daily either weekly controlled. By the daily procedure there are 4 cycles only, that are repeated every day of the week and are hence all the same. By the weekly procedure, you can program 4 cycles on Mondays, 4 cycles on Tuesdays, 4 cycles on Wednesdays and so on, making every day of the week different from the other. Every cycle is operative starting from the ignition time up to one second before the shutoff time. For example, if a cycle is programmed from 18:00 to 22:00, then it will be working from 18:00 up to 21:59:59
If the ignition time is the same as the shutoff time, then it will be deactivated. In case of several contemporary cycles, priority is given to the highest number; it means that if cycle 2 goes from 18:00 to 19:00 and cycle 3 goes from 18:30 to 20:00 then cycle 2 will be working from 18:00 to 18:29:59 and cycle 3 will be working from 18:30 up to 19:59:59.
The lighting system is off when there is no cycle in operation.
By each cycle you can establish the required output tension level in Volts either, in combination with the luminosity probe Genius Sensor, you can assign the required illuminance value in lux at each cycle. The luminosity sensor Genius Sensor has to be positioned in order to sense the luminous intensity of the environment and not that of the lighting system. The nominal lighting parameter indicates the luminance in lux provided by the sole lighting system at a 230 V nominal tension without any further luminous sources. Genius Control CTRL-128 establishes the tension to be applied to the lighting system according to the nominal lighting, to the lighting of the environment sensed by the probe, and to the illuminance value required at each cycle. During the operation, when the lighting system is on, variations of the output tension -- due to changes of the cycle or to the different results from the measurement of the illuminance data -- may gradually occur, by following a ramp, whose slope is given by the variation slope parameter.
When switching on the system, Genius Control CTRL-128 applies an ignition cycle by setting up the output tension on the value of the ignition tension parameter together with the time based on the ignition time parameter, in order to allow the pre-heating of the lamps. The operation of the timer is established by the input status + TIMR. In order to enable the timer, the input + TIMR needs to be connected to the common COMM; an example of that is the connection of the clean contact of a crepuscular switch that deactivates the timer, in order to prevent the ignition of the lighting system when there is enough sunlight, even though cycles are still in operation.

Manual Input

Genius Control CTRL-128 is provided with the manual mode, enabled through the connection of the input +MANL to the common COMM, that allows to set up the output tension anytime on the fixed value of 220 V , not depending on the timer programming

ON and BYPASS outputs

Genius Control CTRL-128 is provided with the PW-ON and BYPASS outputs implemented by static network tension relay, that connects them to the neutral NE.
The output PW-ON is enabled when the lighting system needs to be on and is provided for the connection of a relay or a contactor, that feeds the power units when the system has to be on and that stops feeding the power units when the system has to be off.
The BY PASS output is enabled when at one or more cycles there is feeding tension in the input and the timer has already started the ignition of the lighting system, but the output tension is too low and indicates the bad functioning or the intervention of the protection devices of the power units.
The BY PASS output is equipped for the connection of a relay or a contactor, connecting the output to the input and preventing the shutoff of the system. Once the bypass condition and the related output are enabled, they remain active until the next shutoff.

Measurements

The measuring unit of the Genius Control CTRL-128 measures the effective value of tension, currents and active power at each cycle and is able to calculate the apparent power, the power factor and the active power. Moreover it calculates the total active power and the saved active power and gathers energy meters and meters for saved energy.

Calibration of energy efficiency

Genius Control CTRL-128 establishes the estimated power consumption of the lighting system according to the feeding tension of the system itself. The estimate is calculated according to the data collected from the calibration of efficient energy that, step by step, feeds the lighting system with different output tension values and reveals the related active power consumption. The calibration of efficient energy makes a further check at the end of the cycle, by feeding the system at a fixed output tension value, by calculating the estimate active power consumption starting from the collected data and by verifying that it matches with the active power actually measured. The output tensions, feeding the system during the efficient energy calibration process, range between the parameters of minimum and maximum limit of the output tension.

Calculation of energy efficiency

Genius Control CTRL-128 allows to calculate the active power consumption and the gathered energy efficiency, that represent the instantaneous and total energy saving of the system, achieved through the regulation device when directly connected to the electric network. The active power consumption is equal to the difference between the active power - that the system would absorb if it was fed directly at the input tension -- and the active power actually absorbed by the lighting system itself, fed at the regulated output tension. The active power, that would be absorbed by the lighting system in case it was fed directly at the input tension, is calculated according to the data collected during the energy efficiency calibration process.

Abstract

Alarms

Genius Control CTRL-128 operates several alarms conditions in order to indicate bad functioning of the regulation device and of the lighting system. At each cycle the following alarm records can be individually enabled or deactivated: absent input tension, absent output tension, open loading and abnormal loading. Conditions of absent input and output are due to a low input- and output tension, conditions of open loading are due to a low active power consumption, conditions of abnormal loading are due to an active power consumption that is different from the expected one. The expected active power is the power that should be absorbed by the lighting system when it is fed at the output tension and is calculated according to the data collected during the energy efficiency calibration process. The reporting of abnormal loading can be used to indicate the bad functioning of the lamps or the selection of parts of the system for the intervention of automatic switches. The reporting of alarm in bypass condition can also be enabled or deactivated. The alarm condition is indicated by the opto-insulated \pm ALARM output.

CONFIGURATION

Home Page

By the ignition the Genius Control CTRL-128 displays for a few seconds the home page indicating the version of the installed software. (V.01.00).

```
Genius Ctrl-128 V.01.00
```


Main Page

The main page is displayed when the menu is not active. On the main page the day, the current date and time, the operative time cycle, any bypass or alarm condition and the output status are displayed.

When the power reserve of the internal clock is over, due to a continuous absence of feeding, the current time is no longer displayed (--- --/--/-- --:--:--) and the clock functions are deactivated. In order to restore the regular functioning, the clock regulation procedure needs to be applied. The indicator of the time cycle displays the number of the current time cycle (ex. F2) either indicates that no time cycle is operative (F-). The manual mode is also indicated (Man) together with any bypass (BYP) and alarm condition (ALL). The displaying of the output status indicates the output tension (ex. 205V) or the state of rest (OFF).

Main Menu

By pressing the knob you can enter from the main page to the main menu, allowing the access to the functions of the Genius Control CTRL-128. By turning the knob all the functions of the menu are displayed, by pushing it the selected function can be entered. When there are changeable values, such values can be modified by pushing the knob; the item being modified is highlighted and can be actually changed by turning the knob. By pushing it again the modified item is confirmed and in case of further variable values you can access the following one. The change process ends when there are no more values highlighted. The last entry (BACK) allows to go back to the main menu or to the home page.

Measurements displaying

This function allows the access to the measurements displaying pages including: lighting (Ix), input tension (Vrms), output tension (Vrms), current (Arms), active power (W), apparent power (VA), power factor, reactive power (VAr), total active power (W), saved power (W) energy (kWh), saved energy (kWh). The illuminance value can be displayed only when the probe Genius Sensor is connected.

Lamp Test

This function allows a quick control of the functioning of the regulation system by setting up the output tension on a specific value.

```
Uscita
```

210 V

In order to enable the specific output tension value you need to press the knob and access the change of the parameter. As long as the parameter is changed, its value will be immediately applied to the output, without considering the minimum and maximum limits parameters of the output tension. When the change is over, the system will be back to the regular management of the time cycles.

Timer programming

This function allows to program the time cycles. In order to program the timer in a weekly mode, you need to turn the knob and select the week and the timing that have to be modified.

```
Mar 00:00 -> 00:00
F3 Uscita 205 V
```

By pressing the knob you can apply the change of the starting time, of the minutes in the starting time, of the finishing time, of the minutes in the finishing time, of the output or lighting mode and of the illuminance or tension value.
The daily mode of the timer is the same, except that the day of the week cannot be selected.

Clock regulation

This function allows the setting of the internal clock.

$$
\begin{array}{rr}
\text { Mar 01/01/08 08:00:00 } \\
& \text { OK }
\end{array}
$$

By pressing the knob day of the week, day, month, year, hours, minutes and seconds are automatically established. By selecting the OK box, the knob has to be pushed by the timesignal in order to achieve an accurate setting. The set up of the internal clock occurs in the moment the knob is pushed and the OK box is active. By a second thought, if the knob is turned anticlockwise the expression on the box becomes ANN and by pressing the knob you can reset the operation.

Parameters Setting

This function allows the set up of the operation parameters of the Genius Control CTRL-128.

```
Contrasto Display
```

 40 \%
 The display contrast increases as soon as the parameter increases. The pre-established 40\% value is suitable to most cases, it can be reduced in case of high temperatures, that make the display darker, and can be increased in case of low temperatures making the display brighter.

Modo Timer

```
Settimanale
```

The timer manages 4 cycles in a daily mode either 4 cycles for each day of the week in a weekly mode.

```
Accensione
```

210 V 10 m

The ignition parameters indicate the output tension value and the time required for the preheating of the lamps of the lighting system.

```
Limiti Uscita
    Min:180 V Max:230 V
```

The minimum and maximum limits are never overcome in the output tension calculation. The minimum limit has to be set up in order not to switch the lamps off and the maximum limit can be reduced in order to achieve a greater efficiency.

$$
\begin{array}{r}
\text { Illuminamento Nominale } \\
300 \text { lx }
\end{array}
$$

The value of the nominal illuminance is included onto the calculation of the output tension, when we apply the lighting mode for programming the cycles, and it is equal to the luminance in lux provided by the sole lighting system to the nominal 230 V tension.

```
Pendenza Variazione
```

 \(5 \mathrm{~s} / \mathrm{V}\)
 The variation slope value indicates the slope of the ramp where the output tension changes from one value to another one.

Alarm management

This function allows the access to the pages enabling (Att.) or deactivating (Des.) the alarm reports due to absent input tension, absent output tension, open loading, abnormal loading, bypass.

Calibration of energy efficiency

This function allows to apply the procedure for the step-by-step reporting of the active power consumption of the lighting system, fed with different output tension values.
The page of the starting of the calibration process is firstly displayed

```
Calibrazione Risparmio
Avvio OK
```

By pressing the knob the OK box is highlighted, the procedure is started the moment the knob is pressed and the OK box is active. By a second thought, if the knob is turned anticlockwise the expression on the box becomes $A N N$ and by pressing the knob you can reset the operation. During the calibration process the page indicating the following values is displayed: the estimated time left (for ex. -1:04:35), the cycles where the procedure is operative (for ex. RST), if data are being measured (Measuring) or their validity is being checked (Verifying), and the output tension (for ex. 205V).

Calibrazione	$-1: 04: 35$	
RST	Misura	205 V

The estimated time left prior to the end of the cycle is a maximum value, the displayed value can change during the procedure depending on the operative conditions, that make the effective time shorter. By turning the knob you can access the page of stop procedure.

```
Calibrazione Risparmio
Interruzione OK
```

By pressing the knob the OK box is highlighted, the procedure is stopped the moment the knob is pressed and the OK box is active. By a second thought, if the knob is turned anticlockwise the expression on the box becomes ANN and by pressing the knob you can go back to the calibration page. At the end of the procedure, the page of the calibration ending is displayed in case of success.

```
Calibrazione Terminata
********** OK **********
```

If an error occurs during the calibration process, the page indicating the reason of the error is displayed.

```
Calibrazione ERRORE
Ingressi Assenti
```

The reasons for such error might be: ABSENT INPUT if the input tension is too low, ABSENT OUTPUT if the output tension is too low, OPEN LOADING if the absorbed power is too low, OUTPUT NOT ACHIEVED if the output tension is too different from the value required by the procedure, OUTPUT MODE, if the measured output tension value is not increasing as per the values required by the procedure, POWER MODE, if the measured power consumption is not increasing as per the values required by the procedure, VALUES VERIFYING, if the value of the power consumption - calculated according to the data collected during the procedure - do not match the values actually measured, ABSENT INPUTS if by the starting of the procedure there is not enough input tension at each cycle, COMMUNICATION or UNKNOWN in case an internal communication error occur with the measuring system, STOPPED when the procedure is stopped. The error in the output mode might be caused by a variation of the input tension value, the errors of power mode and value verifying occur when the conditions of the system change depending on lamps faults, on removal either insertion of parts for the intervention of sectioning switches during the calibration process.

INSIDE SWITCHBOARD PANEL

EXTERNAL SWITCHBOARD PANEL

f

Conformity certificate

LOW VOLTAGE SWITCHBOARD PANEL ACCORDING TO CEI LEGISLATION 17-13/1
 IEC 439/1 - EN 60439/1

C ϵ

FINAL CLIENT
FINAL CLIENT

PURCHASER

PURCHASER

PURCHASE
PURCHASE

BOARD
 THREE-PHASE SWITCHBOARD PANEL 18KVA WITH CTRL-128

PANEL REFERENCE DATA
S01000

DOCUMENT
DOCS01000

AAgenzie\&Technology
Agentech srl
Strada Massilina, 78-47899 Serravalle R.S.M.
Ph. 0549.970496 - Fax 0549.877645
www.agentech-sm.com - info@agentech-sm.com
The company
AGENTECH S.r.l.

- manufacturer of THREE-PHASE SWITCHBOARD PANEL 18KVA WITH CTRL-128
- type ANS
- reference data S01000
- design $n^{\circ} \quad$ S01000 rev. 01 fg. $n^{\circ} 7$
declares that the above mentioned switchboard panel was manufactured according to:
- [x] harmonized standards
- [] international standards
- [] national standards

Code of the Standards applied: 1) EN 60439-1, CEI 17-13-1
2) EN 50081-1/2, EN 50082-1/2

Title of the Standards applied: 1) Low-voltage switchgear and controlgear assemblies

- Part 1: Standard equipment (AS) subject to type test and nonstandard equipment partially subject to type test (ANS).

Third edition, January 1994.
2) Electromagnetic compatibility. General regulation on emission.

- Part 1: Residential, commercial and light industrial areas.
- Part 2: Industrial area.

Serravalle: 5/03/09
AGENTECH S.r.l.

Annexes: 1) List of checks and tests to be carried out on AS and ANS devices
2) Individual test report on LT switchboard panel - ANS type.
3) List of all brands and models of the devices used.
4) Use and maintenance manual for LT switchboard panels.

LIST OF CHECKS AND TESTS TO BE CARRIED OUT ON AS AND ANS EQUIPMENT

Purchaser: PURCHASER
Purchase: PURCHASE
Object:
Doc. n° :
THREE-PHASE SWITCHBOARD PANEL 18KVA WITH CTRL-128 DOCS01000

List of checks and tests to be carried out on standard equipment (AS) subject to type test and nonstandard equipment (ANS) partially subject to type test in compliance with CEI standards CEI EN 60439-1 (CEI 17-13/1) paragraphs:
8.2.1 Over temperature limit check
8.2.2 Applied voltage withstand check
8.2.3 Short circuit withstand check.

Optional:
[X] Not necessary for panels with nominal Icc $<10 \mathrm{kA}$ or limited Icc $<15 \mathrm{kA}$
[] Panel used in compliance with maximum Icc values envisaged by the manufacturer
8.2.4 Protection circuit efficiency check
8.2.4.1 Check on the connection between earth and protection systems
8.2.4.2 Check on protection circuit short circuit withstand (if Icc>10 KA or Icc limited peak value
>15 KA)
8.2.5 Superficial and air distances check.
8.2.6 Mechanical functioning check.
8.2.7 Protection degree check

With regard to the abovementioned paragraphs, the manufacturer's certificates as well as a list of all components used and all the main features of the manufacturing system chosen are available on record. With regard to paragraph 8.2.1 over temperature limit check, ANS panels implement calculation methods extrapolating AS devices which passed their type test. Such calculations are available on record.

Compliance with CEI EN 60439-1 standard (CEI 17-13/1) was successfully proved in our plant, as summed up in a specific document, paragraphs:
8.3.1 Inspection on equipment, wiring control and electric functioning
8.3.2 Insulation - applied voltage withstand check (or check as in art. 8.3.4)
8.3.3 Protection means and electrical continuity of protection circuits check
8.3.4 Insulation resistance check (if check as in art. 8.3.2 was not carried out)

REPORT ON INDIVIDUAL CHECKS ON LT SWITCHBOARD PANEL - ANS TYPE

Purchaser: PURCHASER
Purchase: PURCHASE
Object:
THREE-PHASE SWITCHBOARD PANEL 24KVA WITH CTRL-128
Doc. n° :

Rif. art. 8.3.1 Equipment inspection, including wiring control and, if necessary, electric functioning check
[x] Mechanical commands, blocks and locks efficiency check
[x] Visual inspection of protection degree
[x] Visual inspection of air and surface distances.
[x] Random inspection of bolted or screwed connection efficiency
[x] Identification plate presence and suitability check
[x] Device conformity to wiring circuit scheme check
[x] Check on the correct electric functioning of complex auxiliary circuits

Rif. art. 8.3.2 Insulation.

[x] Insulation resistance check (Art. 8.3.4) carried out, in place of the underneath one
[] Insulation between active parts connected together and device frame check carried out, according to the following parameters:
$\mathrm{f}=50 \mathrm{~Hz} \quad \mathrm{t}=1 \mathrm{~min}$.
Nominal insulation voltage Ui (V) Test voltage (V)
[] $\mathrm{Ui} \leq 60 \quad 1.000$
[] $60<\mathrm{Ui} \leq 300 \quad 2.000$
[] $300<\mathrm{Ui} \leq 690 \quad 2.500$
[] $690<\mathrm{Ui} \leq 800 \quad 3.000$
[] $800<\mathrm{Ui} \leq 1000 \quad 3.500$
[] $1000<\mathrm{Ui} \leq 1500 \quad 3.500$

Rif. art. 8.3.3 Check on protection means and protection circuit electrical continuity

[x] Protection means against indirect contacts check
[x] Visual inspection of protection circuits.
[x] Contact random trial of PE contacts on bolted or screwed connections check

Rif. art. 8.3.4 Insulation resistance check

[] Insulation check (ref. art. 8.3.2) carried out, in place of the underneath one.
[x] Insulation resistance between circuits and earth check, according to the following parameters:
U applied $=500 \mathrm{~V}$
U exercise $=220 \mathrm{~V}$
$\mathrm{R}=200 \mathrm{M} \Omega$.
$\mathrm{R} \geq 1000 \Omega / \mathrm{V}$.

Legend: [x] check carried out [] check not carried out

LIST OF BRANDS AND MODELS OF COMPONENTS USED

Purchaser: PURCHASER
Purchase: PURCHASE
Object:
Doc. n° : THREE-PHASE SWITCHBOARD PANEL 24KVA WITH CTRL-128 DOCS01000

The company AGENTECH S.r.l. declares that the following components have been used:

DESCRIPTION	BRAND	MARK	CONFORMITY
Cupboard in fibreglass	CELBO	CE	CEI 23-48, CEI 23-49
Modular automatic switcher	CHINT	CE	CEI EN 60947-2, CEI EN 60898, IEC 898
Contactors	ABB-ELETTROCOND.	CE	IEC 947-4-1, DIN VDE 0660, IEC 158-1
Terminals	LEGRAND	CE	IEC 947-7-1, EN60947-7-1
Wire ducts type T1-E	BOCCHIOTTI	CE	CEI 23-22, DIN 43659
Profile rail guides type OMEGA 3	BOCCHIOTTI	CE	DIN EN 50022, CENELEC EN 50022, CEI 17-18
Wire N07V-K	GENERAL CAVI	CE	CEI 20-22 II, CEI 20-35, Tabella CEI UNEL 35752

and that selection criteria and assembling instructions as reported in the specific use and installation manuals have been fulfilled. It also declares that it did not alter in any way, during assembling operations or by means of any modifications, the performances of the material used and reported by the manufacturer.

Such performances enable the company to assert the conformity of the switchboard panel subject to the checks and tests requested to AS and ANS devices with CEI EN 60439-1 (CEI 17-13/1) standards.

[^0]: Tele REC Earth leakage protection
 with automatic self-reclosing
 Sistema de reconexión automática
 Interruttore differenziale con riarmo
 automatico automatico

